Two Sample Tests for High - Dimensional Covariance Matrices

نویسندگان

  • JUN LI
  • SONG XI CHEN
چکیده

We propose two tests for the equality of covariance matrices between two high-dimensional populations. One test is on the whole variance–covariance matrices, and the other is on off-diagonal sub-matrices, which define the covariance between two nonoverlapping segments of the high-dimensional random vectors. The tests are applicable (i) when the data dimension is much larger than the sample sizes, namely the “large p, small n” situations and (ii) without assuming parametric distributions for the two populations. These two aspects surpass the capability of the conventional likelihood ratio test. The proposed tests can be used to test on covariances associated with gene ontology terms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrections to LRT on Large Dimensional Covariance Matrix by RMT

Abstract: In this paper, we give an explanation to the failure of two likelihood ratio procedures for testing about covariance matrices from Gaussian populations when the dimension is large compared to the sample size. Next, using recent central limit theorems for linear spectral statistics of sample covariance matrices and of random F-matrices, we propose necessary corrections for these LR tes...

متن کامل

Tests for High-Dimensional Covariance Matrices

We propose tests for sphericity and identity of high-dimensional covariance matrices. The tests are nonparametric without assuming a specific parametric distribution for the data. They can accommodate situations where the data dimension is much larger than the sample size, namely the “large p, small n” situations. We demonstrate by both theoretical and empirical studies that the tests have good...

متن کامل

Tests for covariance matrices in high dimension with less sample size

In this article, we propose tests for covariance matrices of high dimension with fewer observations than the dimension for a general class of distributions with positive definite covariance matrices. In one-sample case, tests are proposed for sphericity and for testing the hypothesis that the covariance matrix Σ is an identity matrix, by providing an unbiased estimator of tr [Σ] under the gener...

متن کامل

Shrinkage Estimators for High-Dimensional Covariance Matrices

As high-dimensional data becomes ubiquitous, standard estimators of the population covariance matrix become difficult to use. Specifically, in the case where the number of samples is small (large p small n) the sample covariance matrix is not positive definite. In this paper we explore some recent estimators of sample covariance matrices in the large p, small n setting namely, shrinkage estimat...

متن کامل

Rate Optimal Estimation for High Dimensional Spatial Covariance Matrices

Spatial covariance matrix estimation is of great significance in many applications in climatology, econometrics and many other fields with complex data structures involving spatial dependencies. High dimensionality brings new challenges to this problem, and no theoretical optimal estimator has been proved for the spatial high-dimensional covariance matrix. Over the past decade, the method of re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012